Ground School: Ice Flying: Strategies or “You’re as cold as ice”

Ground School: Ice Flying: Strategies or “You’re as cold as ice”

As per some previous discussions on our Discord and some very alarming PIREPs during these winter months at AKV we are happy to bring you what we can in the way of tips to avoid crashes or stalls due to icing conditions in the air. By no means is this our condoning flying in visible moisture during icing conditions, the best defense against icing starts on the ground with a forecast after all.

This guide will not go into depth about why icing occurs nor will it cover anti-ice equipment. Simply “what to do when you’ve got ice” Sometimes these situations are unavoidable and a lot of times IFR can lead to icing unexpectedly. Without further ado:

“Ice Flying”: The Strategy

Smart “ice flying” begins on the ground. For VFR flight operations, with the exceptions of freezing rain, freezing drizzle, and carburetor icing, staying clear of the clouds by a safe margin solves the icing problem. For pilots choosing to go IFR, it becomes more complicated.

Use the many resources available to you:


Direct User Access Terminal (DUAT) system

Flight Service stations

ADDS (Aviation Digital Data Service) found online at

AOPA Online

Aviation Weather Center’s current icing potential (CIP)

Continue to request pilot reports—and make some of your own—along your route if you suspect icing to be a potential problem. Ask the right questions, and remember that conditions that appear to be similar to weather you’ve dealt with before may be much different.

Where are the fronts? Know the big picture because most ice is in fronts and low-pressure centers.

Where are the fronts moving? Where will they be when I depart and when I arrive? Check “upstream” weather reports and trends. If the destination is Cincinnati, what’s the weather in Indianapolis 100 miles to the northwest? Remember that forecasts are not guarantees and plan accordingly.

Where are the cloud tops? You cannot climb through a front with tops to 30,000 feet. For most light non-turbocharged aircraft, once the tops reach 8,000 feet, climbing is no longer an option. Once on top, can you stay on top? Expect much higher clouds over mountains.

Where are the cloud bases? Below the clouds where freezing rain or freezing drizzle is not present, there will be no structural icing.

Where is the warm air? If the freezing level is high enough above the IFR minimum en route altitude (MEA), the flight may be feasible. However, air traffic control may not be able to guarantee you the MEA due to traffic or conflicts with other sectors. If it’s freezing on the surface and the clouds are close to the surface and more than a few thousand feet thick, it is foolish to attempt to climb through to clear conditions on top.

Air mass clouds or frontal clouds? Know the difference between air mass clouds and frontal clouds. Frontal clouds are usually indicative of large areas of significant weather, so an aircraft flying through frontal clouds can be exposed to icing conditions for a longer period of time. Air mass clouds may have snow showers but do not have large areas of steady snow. Unless you are flying in the mountains, steady snow or rain means significant weather is building.

With the exceptions of freezing rain and freezing drizzle, the only way to gather structural ice is in an actual cloud. Flying in snow or between cloud layers will not cause structural ice, although wet snow may adhere to the aircraft.

What alternate routes are available? Flying the flatlands with lower MEAs is likely to provide much better weather, a smoother ride, and less ice than the same trip over the mountains. Detour if necessary. Avoid flying south through a front that is 200 miles long when you could fly west and be through it in 35 miles.

What are the escape routes? At any time during a flight where structural ice is a possibility, you need an alternate plan of action. That could be a climb, descent, 180-degree turn, or immediate landing at a nearby airport. It will depend on traffic, terrain, cloud conditions, visibility, and availability of suitable airports. Quickly tell ATC you are in ice and want out. Ask for a higher or lower altitude or a 180-degree turn. If ATC won’t let you climb due to traffic, let them know that you are willing to accept a climb at any heading.

What pireps are available? Pay particular attention to pireps. Because icing is forecast for extremely broad areas, pireps may be the only information you’ll have as to where the ice is actually occurring. They tell you what the conditions really were at a particular time in a specific place. Think about whether those conditions are likely to be duplicated during your flight. How will you handle it? What are your escape plans?

Pireps are individual judgment calls, so having several for the same area will usually result in a better picture. Be prepared for surprises if you rely on just one pirep. The type of aircraft making the pirep is also critical. When jets or turboprops report moderate ice or worse, that’s a mandate for light aircraft to plan a different strategy immediately. Turbine-powered airplanes are equipped for flight into icing conditions and have much higher performance to punch through an icing layer quickly. A “light” ice report from turbine aircraft may mean moderate ice for you. How old is the pirep? Weather moves and changes, so a report more than 45 minutes old may be of limited use.

The Aeronautical Information Manual (AIM) defines how in-flight icing should be reported when filing a pirep:

  • Trace: Ice becomes perceptible. Rate of accumulation is slightly greater than the rate of sublimation.
  • Light: The rate of accumulation may create a problem if flight is prolonged in this environment (over one hour). Occasional use of deicing/anti-icing equipment removes/prevents accumulation. It does not present a problem if the deicing/anti-icing equipment is used.
  • Moderate: The rate of accumulation is such that even short encounters become potentially hazardous and use of deicing/anti-icing equipment or flight diversion is necessary.
  • Severe: The rate of accumulation is such that deicing/anti-icing equipment fails to reduce or control the hazard. An immediate flight diversion is necessary.


“Ice Flying”: The Tactics

(In-flight portions of this section are intended for aircraft that are certified for flight into known icing conditions. Non-certified aircraft must exit any icing conditions immediately.)



Carry extra fuel. In icing conditions, extra power is needed because of increased aerodynamic drag and/or because carburetor heat is used. Fuel consumption will increase.

Other than extra fuel, keep the aircraft as light as possible. The more weight to carry, the slower the climb and the more time spent in ice.

Remove all frost, snow, or ice from the wings. There is no point in starting the day with two strikes against you. Every winter there are “frostbitten” pilots who crash as a result of guessing how much frost their aircraft will carry. A perfectly clean wing is the only safe wing. Don’t count on blowing snow off when taking off. There could be some nasty sticky stuff underneath the snow. If you think it’s light enough to blow off, it should be very easy to brush off before starting. Do it!

The propeller(s) must be dry and clean. Check the controls to be sure there is freedom of movement in all directions.

Check the landing gear (especially retractables) and clean off all accumulated slush. wheel fairings on fixed-gear aircraft should be removed in winter operations because they are slush collectors. Be sure to check wheel wells for ice accumulation. This is always a good idea after taxiing through slush.

Be sure that deice and anti-ice equipment works. When was the last time you actually checked the pitot heat for proper functioning?



Taxi slowly on icy taxiways. The wind may become a limiting factor because the ability to steer and counteract weathervaning tendencies is poor. Tap the brakes lightly and briefly. Hard braking pressure will lock the wheels, resulting in a skid. If the runup area is slick, it may be impossible to run the engine up without sliding. It might be better to stop on the taxiway, leave room to slide, and watch where you’re going. If there is a dry patch of pavement, stop there to do the runup.

Make sure the wing tips and tail are clear of any snow piled up along the edge of the taxiways.



Know where the cloud bases and the tops are, and check for recent pireps. If you encounter icing conditions, have a plan either to return to the departure airport or climb above the ice. If you decide to return, be sure you can safely fly the approach in the existing weather conditions. In either case, advise ATC you will need clearance to proceed as soon as possible. If there is heavy traffic, there may be some delay. If you don’t factor this into the plan, you are not prepared.

You may want to cycle the landing gear after takeoff to help shed ice from the landing gear.

During climb, even though you are anxious to get out of icing, do not climb too steeply because ice can form on the underside of the wing behind the boot. Remember that as the ice accumulates on the underside of the wing, drag increases, sometimes dramatically. Do not lose control of the aircraft.


En Route

Make pireps as you go and ask for them en route. Talk to ATC and flight service about any weather developments or forecast changes. All the cautions about pireps mentioned earlier apply here.

Airspeed is a key to measuring ice accumulation. If normal cruise speed is 140 KIAS and you notice the airspeed has dropped to 130 KIAS, it’s time to exit immediately. If you can’t climb or descend, then a 180-degree turn is the only option, and that will result in a loss of at least another 10 KIAS until you’re out of the ice. A 20-knot drop in airspeed is plenty. Add power to increase airspeed, since stall speed margins shrink with speed loss. Speed discipline is essential in icing conditions. The lower the performance of the aircraft, the less airspeed loss can be tolerated. Remember, an aircraft not certified for flight into icing conditions should start working to get out of those conditions at the first sign of ice.

At the first sign of ice accumulation, decide what action you need to take and advise ATC. Do you know where warmer air or a cloud-free altitude is? If you need to modify your route to avoid ice, be firm with ATC about the need to change altitude or direction as soon as possible. Don’t wait until the situation deteriorates; start working with ATC early. If you need to declare an emergency to solve the problem, do it. This is a far better alternative than crashing.

If you’re on top of a cloud layer and can stay on top, ask ATC for a climb well before getting into the clouds. Icing is much worse in the tops of the clouds. If you’re in the clouds and the temperature is close to freezing, ask for a top report ahead. This tells you whether going up is a better option than descending. In a low-power aircraft, climbing through a 3,000- foot icing layer to get on top is chancy.

If flying around mountains, be extra cautious. The air being lifted up the mountain slopes by the wind (called orographic lifting) is known to produce moderate to severe icing conditions.

Expect severe icing potential when flying over or when downwind of the Great Lakes and other large bodies of water. The air is extremely moist, and if the temperatures are freezing or below, the clouds can be loaded with ice.

Do not use the autopilot when in icing conditions. It masks the aerodynamic effects of the ice and may bring the aircraft into a stall or cause control problems. The situation can degrade to the point that autopilot servo control power is exceeded, disconnecting the autopilot. The pilot is then faced with an immediate control deflection for which there was no warning or preparation.


Approach and Landing

Most icing accidents occur in the approach and landing phases of flight. If on top of ice-laden clouds, request ATC’s permission to stay on top as long as possible before having to descend. When carrying ice do not lower the flaps. The airflow change resulting from lowering the flaps may cause a tail with ice accretion to stall. Remember the stall speed is increased when carrying a load of ice, and the stall margin is reduced when you slow to land. If the aircraft is iced up, carry extra power and speed on final approach—at least 10 to 20 knots more speed than usual. Do not use full flaps when carrying this extra speed, or a tail stall may occur. Remember, speed discipline is essential in icing conditions. Most icing accidents occur when the aircraft is maneuvering to land. Be very cautious of turns. The stall potential is high. If you have a choice of airports, use the longest runway possible, even if it means renting a car to get home. A 3,000-foot strip is not the place to go when carrying ice, even though it might be twice the runway you normally use. Because of increased airspeed and a no-flap configuration, the landing distance will be much longer than normal. If there is ice aloft, frequently there may be ice on the runway as well, which greatly increases stopping distance.

If you are unfortunate enough to have an inadvertent icing encounter in an aircraft without windshield anti-ice, turn the defroster on high to possibly keep a portion of the windshield clear. Turn off the cabin heat if that will provide more heat to the windshield.

If the windshield is badly iced, open the side window and attempt to scrape away a small hole using an automotive windshield ice scraper, credit card, or other suitable object. You may damage the windshield, but the alternative could be much worse.

Do not lose control of the aircraft when removing ice from the windshield.


Immediate: A Word to Live By

Pilots are invariably better judges of their flight environment than controllers, but sometimes pilots have difficulty expressing their predicament to ATC. We want to exit icing conditions as soon as possible, but ATC may delay our request for any number of reasons. Now there is a way, short of declaring an emergency, for pilots to get expeditious handling. Requesting an immediate climb, descent, or turn lets the controller know that unless the request is handled quickly an emergency situation will likely develop.

Ground School: How to taxi the DC-3 or “Gooneybird feet”

Ground School: How to taxi the DC-3 or “Gooneybird feet”

No matter how many times we have flown the airlines in real life, we would be hard pressed to recall the last time that we boarded an aircraft at the end of the runway. It’s time to expose the mystery of taxiing the flightsim DC-3, and begin or end the flights properly… at the terminal!

Initially, one is baffled. What’s the big deal about turning a DC-3 while departing from a gate or entering a runway? turn left, left rudder; turn right, right rudder.
It’s not that simple, for two reasons:

  • At slow speeds, insufficient air flows past the rudder for it to be effective.
  • The DC-3’s rudder is small for the size of the aircraft.

This unhappy situation leaves us with two controls to steer the aircraft: the engines and the brakes. Effective use of them, however, especially together, can give us a much sharper turning radius than with a tricycle gear aircraft. So let’s mount our trusty DC-3 and find out whether a mortal truly can taxi her.

Before we taxi out to the tarmac to give it a go, understand two basic principles:

  • Use the inside brake, the one nearest the center of the circle, to turn.
  • Use the outside engine, the one farthest from the center of the circle, to turn.

Not a bit of that information is useful, though, until we solve the visibility problem while taxiing the DC-3. All we can see is the sky. Trust me, nothing will quite ruin our day so much as taxing into a fuel truck. Well, taxiing into the boss’ office is a close second.

So, change that viewpoint! Dedicate one for taxi and make sure it has good side to side vision as well.

Ok, send all the gigglers away and we’ll get started. First, though, be aware that taxiing is ever so much simpler and more enjoyable if you have rudder pedals. Plus pedals greatly add to the realism of flight (and you’ll finally discover what that ball in the Turn and Bank indicator is present for.) But be certain that the pedals can operate the aircraft’s brakes, too.

Satisfactory ground steering is impossible unless the Rudder Auto-coordination is off, in X-Plane this means binding your rudder controls.


Brakes-Only steering.

Let’s begin with brakes-only steering. To clear the airport of all other aircraft, we affix a “Student Pilot” sign to each side of our fuselage, in such a position to cover the AKV logo. Next, we move the aircraft to a runway. Adjust your view and set the props to the High RPM position. For this situation, leave the engine controls locked so that both throttles advance together, etc. Now advance the throttles sufficiently to taxi down the runway at 15 to 20 kts. Easy on the speed, though … nothing quite so embarrassing as lifting off while taxiing.

NOTE: Flightsim brakes differ from those on a real aircraft or from those in your car … they are digital, either fully on or fully off. However, if you use rudder pedals, or a script (and in certain aircraft) proportional braking is available.

Follow this routine

Taxi to the turn-off, and tap the left brake to turn left. If you have rudder pedals, also apply the left rudder pedal. Proceed down the taxiway and again tap the left brake, and apply the left rudder pedal, to turn left toward the beginning of the runway. Using the sims “slew” command, Rotate the aircraft 180 degrees and repeat the above taxi maneuver but in the opposite direction, which requires right turns.


Power-Only steering.

We’ll repeat the procedures we just did for brakes-only steering, but this time we will control the aircraft’s direction with its engines. Again move the aircraft to the runway and verify that the power controls are able to move independently.
Increase the throttles to begin your straight-ahead taxi up the runway, about 10 to 12 knots is a good speed. As you near the turn off, slowly increase the power on the right engine to navigate the turn. You can synch the two throttles together again for the straight portion of the taxi if you wish, as you near the runway, unsynch the power controls, and control the left turn by adjusting power to the right engine, and taxi to the end of the runway.

Again rotate the aircraft by “slewing” it to the runway and repeat this procedure in the opposite direction, controlling the left engine for the right turns.
If you have rudder pedals, apply left rudder when turning left, and right rudder when turning right. The newer versions of the DC-3 have steerable tail wheels to assist in steering.


Brakes and power-control for steering.

This method gives the most control to turn the DC-3. Move the aircraft to the runway, synch the power controls, then taxi up the runway until near the turn off. unsynch the power controls, tap the left brake and carefully apply power to the right engine to accurately control the turn onto the taxiway. Repeat that procedure for entering the runway with another left turn.
Lastly, move the aircraft to the runway and repeat this procedure rotated, making right turns by tapping the right brake, and increasing power to the left engine.



1) Taxi twice in each direction using Brakes-Only steering.
2) Taxi twice in each direction using Power-Only steering.
3) Taxi four times in each direction using Differential steering.

Ground School: Seaplanes: Taxi & Takeoff, or “Get your floaties on”

Ground School: Seaplanes: Taxi & Takeoff, or “Get your floaties on”

Seaplanes and X-Plane 
Originally by Chuck Bodeen with edits for XP11 by yours truely 😉


Once a seaplane is in the water and released from contact with a dock it is subject to weathervaning which is the tendency of the plane to face the wind. Its the same physical principle that keeps an arrow going straight ahead. The strength of this effect depends upon how much of the plane is behind the center of buoyancy.



Wheeled airplanes tend to pivot on the main landing gear wheels. Tail wheel planes have more side area exposed to the wind behind the main gear and are more subject to weathervaning than planes with tricycle gear. For seaplanes, the pivot is around the center of buoyancy which varies according to the pitch attitude in the water. At rest in the water a seaplane acts like a tail dragger. As it starts to move forward you must hold the yoke full back to counter the moment produced by the engine thrust. This raises the nose of the floats and there may be just as much wind-exposed side area ahead as there is behind producing virtually no weathervane effect. If this progresses into a deep plow the weathervaning can even be reversed! Finally, when the floats are moving fast enough to plane or up on-the-step, the effect of side winds can be almost the same as a taildragger again. Because of weathervaning there are only two practical taxiing speeds: slow and on-step although plowing is sometimes useful in turning.

DHC-3 Otter_FLOAT_17

Getting on the step requires the nose to be lowered and staying there is no easy task. You must use just the right amount of back pressure on the stick. Too much or too little will increase the drag and reduce speed. For taxiing, the throttle has to be reduced after you are on the step. Continuing on step with full power you will eventually reach the speed where the plane will lift itself off the water and then fly like a regular airplane. Lack of proper elevator control on a step taxi or takeoff run can result in porpoising which is a pitch oscillating condition that can increase in magnitude if you do not reduce elevator back pressure. Otherwise you may need to reduce power and abort the takeoff.

You may think that smooth water would be the best. Actually the rough water associated with a nice headwind allows you to takeoff at a lower waterspeed which reduces the drag on the floats. The fact that you are cutting along across the tops of the waves also reduces water drag. Depending upon the design of the floats, it is usually not recommended that you rotate as the plane lifts off the water.

Landing is made difficult by lack of visual contact with features on the ground and is particularly troublesome when coming in on glassy, smooth water. On the other hand, hitting rough waves at high speed can damage the floats, so you should always use the slowest possible water speed. Usually the waves will be caused by the wind, so even without a windsock you should be able to determine the proper heading for final approach. Never land parallel to the wave fronts rocking the boat is not a good idea.
So after landing what do you do? Once again you are at the mercy of the wind and with no ground-gear friction or brakes to help you steer. Sailing is a technique that allows you to take advantage of weathervaning and get where you want to dock, even by going backward in the water! After landing in a wind of, say, 20 knots you can set the engine to idle, and use the flight controls to turn the nose toward the dock. Go past the dock and then use power and control to finish.



Docking can be rather tricky because in a real plane you will be out of the cockpit standing on one of the floats. With the engine off, you may need a paddle (standard equipment on seaplanes) if you need just a bit more propulsion, or you might have to use your foot to keep the floats from hitting the dock too hard. There is a lot more to learn including the combined effects of currents and wind.

DHC-3 Otter_FLOAT_33


Here is how the takeoff goes. Once in the water, water rudders are lowered (more about that later) and gear is raised followed by a slow taxi out to the end of the takeoff area and a turn into the correct heading. At this point be sure the brakes are off. In the water, the brakes activate an anchor that will tie you to the spot you drop it. Now raise the water rudders, lower the flaps one notch, set the elevator trim for takeoff, and advance to full pitch and throttle. Pull back on the yoke to reduce drag by raising the leading edge of the pontoons. At about 40 knots, push the yoke forward to get the tail of the pontoons out of the water and have the ship plane on-the-step. At 60 knots the plane will lift off the water by itself. Come to think of it, this is quite a bit like a takeoff for a tail dragger, X-Plane has a default wave height which causes the ripples in the altitude, but I made the takeoff tests with little wind and wave height set to 0.3





Real water rudders are usually placed at the rear of the pontoons or hull and are retractable so as not to be damaged or cause excessive drag during high speed operation. X-Plane has only one way to handle a water rudder. On the landing gear page, you can specify the longitudinal position, the area of the rudder, and the maximum angular movement. You have no control over the vertical position and X-Plane assumes that the water rudder is completely submerged if any part of the fuselage or floats is in the water.



Still having trouble? Duct Tape can help! no seriously check this out:

Ground School: Decoding METARs

Ground School: Decoding METARs

The most important factor in determining which runway to use for takeoff or landing is arguably the weather. Whether you are on VATSIM, PE or offline (pun intended) you cab obtain current and forecasted weather reports with a METAR. This Class will help you decode a METAR and teach you what the abbreviations stand for.

Requesting a METAR


To request a text METAR on VATSIM using XSB, type this in the chat:
.metar CODE where CODE is the ICAO of the airport wanted.
i.e. Juneau, you would type .metar PAJN


To request a METAR click your map on the airport desired to obtain the radio frequency needed to hear the ATIS and get the latest report.

A Typical Example

Lets examine a METAR for, say, Amsterdam, sexy women and good food! METARs right, sorry!

Keep in mind over in Europe they use meters instead of miles.

EHAM 291050Z 24015KT 9000 RA SCT025 BKN040 10/09 Q1010 NOSIG

Decoded: METAR for Amsterdam Schiphol dated the 29th at 10h50z; wind direction is at 240 degrees and 15 knots; 9000 meters visibility; Rain, scattered cloud at 2500 feet; broken cloud at 4000 feet; Temperature is 10 degrees; dew point is 9 degrees; QNH is 1010; No significant change expected in the next few hours.

Decoding Legend

In the example above you get a vague idea of what some parts of a METAR mean, let’s break it down by sections and help you understand further.

EHAM 291050Z 24015KT 9000 RA SCT025 BKN040 10/09 Q1010 NOSIG

The first section always contains the ICAO code for the airport

EHAM 291050Z 24015KT 9000 RA SCT025 BKN040 10/09 Q1010 NOSIG

The second part is the date

EHAM 291050Z 24015KT 9000 RA SCT025 BKN040 10/09 Q1010 NOSIG

After the date is the time of the report, which is always UTC

EHAM 291050Z 24015KT 9000 RA SCT025 BKN040 10/09 Q1010 NOSIG

Then the wind direction in degrees and its speed in knots

EHAM 291050Z 24015KT 9000 RA SCT025 BKN040 10/09 Q1010 NOSIG

Visibility in meters (for Europe, miles are used elsewhere)

EHAM 291050Z 24015KT 9000 RA SCT025 BKN040 10/09 Q1010 NOSIG

RA means there is rain

EHAM 291050Z 24015KT 9000 RA SCT025 BKN040 10/09 Q1010 NOSIG

SCT means there are scattered clouds

025 means they are at 2500 feet

EHAM 291050Z 24015KT 9000 RA SCT025 BKN040 10/09 Q1010 NOSIG

BKN means there are broken clouds

040 means they are at 4000 feet

EHAM 291050Z 24015KT 9000 RA SCT025 BKN040 10/09 Q1010 NOSIG

In this section the temperature is always first, followed by the dew point so:

  • The temperature is 10 degrees
  • The dew point is 9 degrees

EHAM 291050Z 24015KT 9000 RA SCT025 BKN040 10/09 Q1010 NOSIG

When you see NOSIG at the end of a METAR this means that no significant changes are expected in the next few hours


There are some free tools online which allow you to decode METARs easily and I recommend their use to learn what all the abbreviations and terms within them mean.


Ground School: Preflight Planning

Ground School: Preflight Planning


One of the most neglected acts of a pilot contemplating flight in an aircraft is that of proper preflight planning. The facts are well supported by aircraft accident statistics. The accident and fatality/serious injury statistics indicate an increase in the percentage of accidents during takeoff. Statistics taken from the National Transportation Safety Board files show that from 1979 through 1983, 728 persons died and 665 were seriously injured in 4,291 takeoff accidents. These accidents are significant to general aviation pilots, they represent about 20 percent of all general aviation accidents and about 16 percent of all fatalities and serious injuries annually.
Traditionally, pilots have emphasized the planning of the en route and approach/landing phases of flight; e.g., the route to be taken, en route and destination weather, en route and terminal facilities, applicable altitudes and fuel requirements. Accident data, however, indicate that too little preparation is made for the actual takeoff of the aircraft.
In order for pilots to fulfill their responsibilities to ensure the safety of the entire flight, it is necessary that they have adequate knowledge of elements involved in preflight planning. It is also necessary that they take time to analyze the conditions and study the various factors which would affect the takeoff, en route, and landing phases of flight.



A basic element of preflight preparation requires the use of current navigational charts on which pilots can mentally review their intended route of flight. They may or may not wish to draw a line on the chart representing the true course. They should, however, review the projected path across the face of the chart for the location of good checkpoints, restricted areas, obstructions, other flight hazards, and suitable airports. For visual flight rule (VFR) pilot planning by either pilotage or dead reckoning, the Sectional Aeronautical Chart is an excellent choice. It is scaled at 1/500,000, or 8 miles to the inch. The physical characteristics of most landmarks, both cultural and geographic, are shown in great detail. The pilot should have little difficulty identifying the selected landmarks along the route of flight. Another popular chart is the World Aeronautical Chart (WAC). The scale of the WAC is 1/1,000,000, or 16 mile to the inch. Many states print aeronautical charts which are excellent for VFR navigation within their state boundaries. The pilot should realize, however, that all of these charts are designed primarily for VFR navigation and contain only limited information concerning radio aids and frequencies. The use of instrument flight rules (IFR) navigational charts for planning pilotage or dead reckoning VFR flights is not desirable for the following reasons:

  • Many airports used by the VFR pilot are not depicted or listed on the charts.
  • Very few geographic or cultural landmarks are provided.
  • The pilot should refer to the Airman’s Information Manual – Basic Flight Information and Air Traffic Control Procedures (AIM) – for the precise coverage of this information.

Most pilots are reluctant to admit to being disoriented or lost. Being lost can be an embarrassing and sometimes frightening experience. Pilots should carry appropriate and current aeronautical charts on all cross-country flights. The use of outdated charts may result in flights into airport traffic areas, control zones, or other restricted airspace without proper authorization. Having available the information contained in current charts will enhance the pilot’s ability to complete the flight with greater confidence, ease, and safety.


Since the shortest distance between two points is a straight line, a majority of pilots desire direct routes for most flights. Quite often there are factors that should be considered that may make a direct flight undesirable. Restricted and prohibited areas present obstacles to direct flights. In single-engine aircraft, pilots should give consideration to circumnavigating large, desolate areas. Pilots should also consider the single-engine service ceiling of multiengine aircraft when operating over high altitude terrain since the terrain elevation may be higher than the single-engine ceiling of the multiengine aircraft being flown. An example of this is a multiengine aircraft with a single-engine service ceiling of 6,000 feet being flown over terrain of 9,000 feet elevation. Pilots should be aware that the only advantage they may have over a pilot flying a single-engine aircraft may be a wider latitude in selecting a suitable forced landing area.

Airman’s Information Manual – Basic Flight Information and Air Traffic Control Procedures (AIM).

Part 91 of the Federal Aviation Regulations (FAR) states, in part, that each pilot in command shall, before beginning a flight, become familiar with all available information concerning that flight. The AIM contains information concerning cross-country flight and basic fundamentals required for safe flight in the U.S. National Airspace System.

Airport/Facility Directory.

The Airport/Facility Directory, published by the National Ocean Service, lists airports, seaplane bases, and heliports open to the public, communications data, navigational facilities, and certain special notices such as parachute jumping, Flight Service Station (FSS)/National Weather Service (NWS) telephone numbers, preferred routes, and aeronautical chart bulletins.

Notices to Airmen (Class II).

Notices to Airmen (Class II) is issued biweekly and is divided into two sections. The first section contains those notices which are expected to remain in effect for at least 7 days after the effective date of the publication. National Flight Data Center (FDC) Notices to Airmen (NOTAMS) primarily reflect changes to standard instrument approach procedures. FDC NOTAMS also establish flight restrictions and correct data on aeronautical charts.

The second section contains special notices that, either because they are too long or because they concern a wide or unspecified geographical area, are not suitable for inclusion in the first section. The content of these notices vary widely and there are no specific criteria for inclusion, other than their enhancement of flight safety.

International Flight Information Manual.

The International Flight Information Manual is published quarterly for use of private flyers, businessmen, and nonscheduled operators as a preflight and planning guide for flights outside the United States.

International Notices to Airmen.

The International Notices to Airmen is a biweekly publication containing significant international NOTAM information and special notices which may affect a pilot’s decision to enter or use certain areas of foreign or international airspace.

Pilots should avail themselves of all appropriate charts and publications, including the AIM and NOTAMS.


A weather briefing is an important part of preflight planning. An overview of the synoptic situation and general weather conditions can be obtained from public media (radio, TV, etc.) or by telephone from recorded sources. This will help the pilot to better understand the overall weather picture when obtaining a complete briefing from the FSS, or other organization that provides this service. Information on public media and recorded weather sources is contained in the Meteorology chapter of the AIM. This chapter also provides information on how to obtain a complete weather briefing, what to look for, and what to ask of the briefer to ensure that the pilot has all the weather necessary for the flight. The weather information should be weighed very carefully in considering the go/no-go decision. This decision is the sole responsibility of the pilot and compulsion should never take the place of good judgment.

Navigation Log.

Precise flight planning of log items, such as pre-computed courses, time and distance, navigational aids, and frequencies to be used will make en route errors in these items less likely. Special attention should be given to fuel requirements, keeping in mind the need for an ample reserve as well as location of refueling points available as the preflight progresses.

Flight Plan (VFR).

This is not required by FAR, but is dictated by good operating practice. A flight plan not only assures prompt search and rescue in the event the aircraft becomes overdue or missing, but it also permits the destination station to render better service by having prior knowledge of your flight. It costs only a few minutes of time to file a flight plan and may be the best investment the pilot ever makes.

Aircraft Manual.

Aircraft manuals contain operating limitations, performance, normal and emergency procedures, and a variety of other operational information for the respective aircraft. Traditionally, aircraft manufacturers have done considerable testing to gather and substantiate the information in the aircraft manual. Pilots should become familiar with the manual and be able to refer to it for information relative to a proposed flight.

At this point I should mention EFBs as they make our lives easier, especially as sim-pilots. We’re already on a computer after all.

An electronic flight bag (EFB) is an electronic information management device that helps flight crews perform flight management tasks more easily and efficiently with less paper. It is a general purpose computing platform intended to reduce, or replace, paper-based reference material often found in the pilot’s carry-on flight bag, including the aircraft operating manual, flight-crew operating manual, and navigational charts (including moving map for air and ground operations). In addition, the EFB can host purpose-built software applications to automate other functions normally conducted by hand, such as performance take-off calculations.


The importance of thorough preflight preparation which considers possible hazards to takeoff cannot be over-emphasized. The following elements, which should be carefully considered, continue to emerge as factors in takeoff accidents: a. Gross Weight.

Maximum allowable gross weight is established for an aircraft as an operating limitation for both safety and performance considerations. The gross weight is important because it is a basis for determining the takeoff distance. If gross weight increases, the takeoff speed must be greater to produce the greater lift required for takeoff. The takeoff distance varies with the square of the gross weight. As an example, for an aircraft with a relatively high thrust-to-weight ratio, a 10 percent increase in takeoff gross weight would cause:

  • a 5 percent increase in speed necessary for takeoff velocity;
  • at least a 9 percent decrease in acceleration; and,
  • at least a 21 percent increase in takeoff distance. NOTE: For aircraft with relatively low thrust-to-weight ratios, the figures are slightly higher.

Operations within the proper gross weight limits are outlined in each operator’s manual. Gross weight and center of gravity (CG) limits should be considered during preflight preparation. Weight in excess of the maximum certificated gross weight may be a contributing factor to an accident, especially when coupled with other factors which adversely affect the ability of an aircraft to take off and climb safely. These factors may range from field elevation of the airport to the condition of the runway. The responsibility for considering these factors before each flight rests with the pilot. b. Balance.

A pilot must not only determine the takeoff weight of the aircraft, but also must assure that the load is arranged to fall within the allowable CG limits for the aircraft. Each aircraft manual provides instructions on the proper method for determining if the aircraft loading meets the balance requirements. The pilot should routinely determine the balance of the aircraft since it is possible to be within the gross weight limits and still exceed the CG limits.

An airplane which exceeds the forward CG limits places heavy loads on the nosewheel and, in conventional landing gear airplanes, may, during braking, cause an uncontrollable condition. Furthermore, performance may be significantly decreased and the stall speed may be much higher.

An airplane loaded in a manner that the CG exceeds the aft limit will have decreased static and dynamic longitudinal stability. This condition can produce sudden and violent stall characteristics and can seriously affect recovery.

Pilots exceeding CG limits in helicopters may experience insufficient cyclic controls to safely control the helicopter. This can be extremely critical while hovering downwind with the helicopter load exceeding the forward CG limit.

Ice and Frost.

Ice or frost can affect the takeoff performance of an aircraft significantly. Pilots should never attempt takeoffs with any accumulation of ice or frost on their aircraft. Most pilots are aware of the hazards of ice on the wings of an aircraft. The effects of a hard frost are much more subtle. This is due to an increased roughness of the surface texture of the upper wing and may cause up to a 10 percent increase in the airplane stall speed. It may also require additional speed to produce the lift necessary to become airborne.

Once airborne, the airplane could have an insufficient margin of airspeed above stall such that gusts or turning of the aircraft could result in a stall. Accumulation of ice or frost on helicopter rotor blades results in potential rotor blade stalls at slower forward air speeds. It could also result in an unbalanced rotor blade condition which could cause an uncontrollable vibration.

Density Altitude.

Aircraft instruments are calibrated to be correct under one set of conditions. Standard conditions represent theoretical sea level conditions, 59 degrees Fahrenheit and 29.92 in Hg. As higher elevations are reached, both temperature and pressure normally decrease. Thus, density altitude is determined by compensating for pressure and temperature variances from the standard conditions. A pilot must remember that as density altitude increases, there is a corresponding decrease in the power delivered by the engine and the propellers or rotor blades. For airplanes, this may cause the required takeoff roll to increase by up to 25 percent for every 1,000 feet of elevation above sea level. The most critical conditions of takeoff performance are the result of a combination of heavy loads, unfavorable runway conditions, winds, high temperatures, high airport elevations, and high humidity.

The proper accounting for the pressure altitude (field elevation is a poor substitute) and temperature is mandatory for accurate prediction of takeoff data. The required information will be listed in the aircraft manual and should be consulted before each takeoff, especially if operating at a high density altitude or with a heavily loaded aircraft.

Effect of Wind.

Every aircraft manual gives representative wind data and corresponding ground roll distances. A headwind which is 10 percent of the takeoff airspeed will reduce the no-wind takeoff distance by 19 percent. A tailwind which is 10 percent of the takeoff airspeed, however, will increase the no-wind takeoff distance by about 21 percent.

Although this consideration is basic to a successful takeoff, the number of accidents involving the selection of the wrong runway for the existing wind and taking off into unfavorable wind conditions indicates a need for many pilots to reevaluate their preflight planning to ensure that the effect of wind is considered fully.

Runway Condition.

There are more than 14,700 airports in the United States, each with runway, having various surface compositions, slopes, and degrees of roughness. Takeoff acceleration is affected directly by the runway surface condition and, as a result, it must be a primary consideration during preflight planning.

Most aircraft manuals list takeoff data for level, dry, hard-surfaced runways. The runway to be used, however, is not always hard-surfaced and level. Consequently, pilots must be aware of the effect of the slope or gradient of the runway, the composition of the runway, and the condition of its surface. Each of these can contribute to a failure to obtain/maintain a safe flying speed.

The effective runway gradient is the maximum difference in the runway centerline elevation divided by the runway length. The FAA recognizes the effect of runway gradient on the takeoff roll of an aircraft and has published limits on the maximum gradients. For general aviation VFR airports the maximum longitudinal runway grade is 2 percent and the longitudinal runway grade change is 2 percent maximum. Furthermore, the takeoff length for a runway must be increased an additional 20 percent for each 1 percent of change in effective gradient to a maximum allowable effective gradient change of 2 percent.

Since the runway gradient has a direct bearing on the component weight of the aircraft, a runway gradient of 1 percent would provide a force component along the path of the aircraft which is 1 percent of gross weight. In the case of an upslope, the additional drag and rolling friction caused by a 1 percent upslope can result in a 2 percent to 4 percent increase in the takeoff distance and subsequent climb.

Frequently, the only runway at an airport has a slope. When determining which direction to use for takeoff, pilots must remember that a direction uphill, but into a headwind, is generally preferred to a downhill takeoff on a downsloping runway. Factors such as steep slope, light wind, etc., however, make an uphill takeoff impractical.

It is difficult to predict the retarding effect on the takeoff run that water, snow/slush, sand, gravel, mud, or long grass on a runway will have, but these factors can be critical to the success of a takeoff. Since the takeoff data in the aircraft manual is predicated on a dry, hard surface each pilot must develop individual guidelines for operations from other type surfaces. g. Cold Weather Takeoffs. The following is an excerpt taken from AC 91-13C, Cold Weather Operation of Aircraft. “Takeoffs in cold weather offer some distinct advantages, but they also offer special problems.

A few points to remember are:

“Do not overboost supercharged or turbine engines. Use the applicable power charts for the pressure altitude and ambient temperature to determine the appropriate manifold pressure or engine pressure ratio. Care should be exercised in operating normally aspirated engines. Power output increases at about 1 percent for each ten degrees of temperature below that of standard air. At -40 degrees F, an engine might develop 10 percent more than rated power even though RPM and MP limits are not exceeded.

“On multiengine aircraft it must be remembered that the critical engine-out minimum control speed (Vmc) was determined at sea level with a standard day temperature. Therefore, Vmc will be higher than the published figure during a cold weather takeoff unless the power setting is adjusted to compensate for the lower density altitude.

“With reciprocating engines, use carburetor heat as required. In some cases, it is necessary to use heat to vaporize the fuel. Gasoline does not vaporize readily at very cold temperatures. Do not use carburetor heat in such a manner that it raises the mixture temperature to freezing or just a little below. In such cases, it may be inducing carburetor icing. An accurate mixture temperature gauge is a good investment for cold weather operation. On some occasions in extremely cold weather, it may be advisable to use carburetor heat on takeoff.

“If icing conditions exist, use the anti-ice and deice equipment as outlined in the Airplane Flight Manual. If the aircraft is turbine powered, use the appropriate power charts for the condition, bearing in mind that the use of bleed air will, in most cases, affect the aircraft’s performance.”


Preflight preparation is the foundation of safe flying. Accident statistics of recent years indicate that adequate preflight preparation is lacking in many cases. As a result, while the number of general aviation accidents and approach and landing accidents has declined, takeoff accidents have increased. Statistics indicate that takeoff accidents occur because elements of the preflight preparation were:

  • not assigned the proper importance,
  • not incorporated into the preflight routine, or
  • pilots did not anticipate potential takeoff emergencies and the required procedures to follow:


To enhance the safety of flying, pilots are encouraged to:

  • form good preflight planning habits and review them occasionally,
  • be thoroughly knowledgeable of the hazards and conditions which would represent potential dangers, particularly during takeoff.
  • be aware of the capabilities and limitations of their aircraft.



I’ll start you off easy. Plan some flights! Use your preferred method of finding a destination and plan the appropriate route there.

Fill out a Nav Log, do some fuel calculations, look up the weather and NOTAMs.

You taking passengers? Don’t forget about their weight and baggage.

We’re flying VFR in a C172SP for now so plan with that in mind.

Have fun with this often neglected part of flying be it real or virtual, if yo want a realistic, safe, informed flight you’ve got to preflight plan.


Special Thanks to a great resource.


Ground School: STOL or “Get your shorts on”

Ground School: STOL or “Get your shorts on”

A short takeoff and landing (STOL) aircraft is an aircraft with short runway requirements for takeoff and landing.

A list of STOL capable aircraft may be found here.

Many fixed-wing STOL aircraft are bush planes, though some, like the De Havilland Canada Dash-7, are designed for use on prepared airstrips; likewise, many STOL aircraft are taildraggers, though there are exceptions like the PAC P-750 XSTOL, Quest Kodiak, de Havilland Canada DHC-6 Twin Otter and the Peterson 260SE. Autogyros also have STOL capability, needing a short ground roll to get airborne, but capable of a near-zero ground roll when landing.

Runway length requirement is a function of the square of the minimum flying speed (stall speed), and most design effort is spent on reducing this number. For takeoff, large power/weight ratios and low drag help the plane to accelerate for flight. The landing run is minimized by strong brakes, low landing speed, thrust reversers or spoilers (less common). Overall STOL performance is set by the length of runway needed to land or take off, whichever is longer.

Of equal importance to short ground run is the ability to clear obstacles, such as hills, on both take off and landing. For takeoff, large power/weight ratios and low drag result in a high rate of climb required to clear obstacles. For landing, high drag allows the aeroplane to descend steeply to the runway without building excess speed resulting in a longer ground run. Drag is increased by use of flaps (devices on the wings) and by a forward slip (causing the aeroplane to fly somewhat sideways through the air to increase drag).

Normally, a STOL aircraft will have a large wing for its weight. These wings often use aerodynamic devices like flaps, slots, slats, and vortex generators.[1] Typically, designing an aircraft for excellent STOL performance reduces maximum speed, but does not reduce payload lifting ability. The payload is critical, because many small, isolated communities rely on STOL aircraft as their only transportation link to the outside world for passengers or cargo; examples include many communities in the Canadian north and Alaska.

Most STOL aircraft can land either on- or off-airport. Typical off-airport landing areas include snow or ice (using skis), fields or gravel riverbanks (often using special fat, low-pressure tundra tires), and water (using floats): these areas are often extremely short and obstructed by tall trees or hills. Wheel skis and amphibious floats combine wheels with skis or floats, allowing the choice of landing on snow/water or a prepared runway.


Backcountry Avaiation shares a series on STOL techniques and tips:


Here are some good free X-Plane STOL planes:

Rans S7 Courier:

Piper J-3 Cub:


Pilatus PC-6:

Piper PA-18 Super Cub: